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Bring Real-time AI to Weak Embedded Devices Background & Motivation

Prediction & Decision making

Wearables for
Health Monitoring

Small Robots for
Autonomous Navigation

Sensors & Actuators
for Smart Home
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Resource Limits on Weak Embedded Devices Background & Motivation

Weak Embedded Devices

STM32 MSP430

< 1 MB memory and storage

16~216 MHz CPU

Large Neural Networks

VGG

Require > 100 MB of memory space

> 2 GHz CPU for 60 ms latency

GoogLeNet

ResNet
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Existing Solutions Background & Motivation

Local Inference Remote Inference NN Partitioning

• Pruning, Compression, NAS

• Leads to oversimplified NN 
structures

• >10% accuracy loss

• Compress raw data before 
transmission

• Limited data compressibility 
when the accuracy loss is 
minimum

• Use a local NN to sparsify & 
compress data

• Higher compressibility but 
expensive local NNs
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Existing NN Partitioning Solutions Background & Motivation

Minimal 
on-device 

cost

Data sample

Best of existing approaches

Fixed learning schemes Cumbered by the worst case

Data-centric

Consider data samples’ heterogeneity

— feature importance

Agile offloading

Adaptive partitioning to minimize 
the offloading cost

goal
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AgileNN: From Fixed to Data-centric & Agile Overview
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Challenge 1: How to correctly evaluate 

feature importance?

Challenge 2: How to maximize the 

compressibility of less important features?
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AgileNN: From Fixed to Data-centric & Agile Overview
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Solving Challenge 1: Evaluating Feature Important via eXplainable AI Solutions

Feature 
Extractor

Predictor
Dog: 0.99
Cat: 0.01

f

y

Δy/Δf gradients feature 
importance

• An eXplainable AI (XAI) workflow

But XAI tools are computationally expensive

• Training an XAI-enabled feature extractor offline

Feature 
ExtractorData

Always produce top important 
features at first-k channels

eXplainable
AI Tool

offline training
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Disorder Loss
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Solving Challenge 2: Enforcing Skewed Distribution of Feature 

Importance via XAI Loss Function

Solutions

Ensure topmost important features are 

extracted into the first-k channels

→ Avoid online importance evaluation

Desired order

minlocal>maxremote

𝐿𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 = 𝑚𝑎𝑥 0,𝑚𝑎𝑥 𝐼2 −𝑚𝑖𝑛 𝐼1

Random order

Skewness Loss

Enhance the importance of top-k features 

to ensure compressibility of the others

𝐿𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 0, 𝜌 − 𝐼1

Not enough 

compressibility

Higher 

compressibility
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Combining local & remote predictions
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Combining Predictions & Preprocessing Solutions

Ensure predictions to be in the same scale

Pre-processing the feature extractor

Local NN

Remote NN

+

× 𝛼

× 1 − 𝛼

Final 
Prediction

•Training stability with different numbers of 
convolutional layers in feature extractor •

•Effectiveness of Pre-processing•

Select k initial channels where the top-k 

features with high importance are most 

likely to be located
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AgileNN’s Offline Training & Online Inference Framework Overview
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Implementation & Evaluation Setup Evaluation

• Local device

STM32F746NG MCU board, 216MHz, 320kB SRAM, 1MB FRAM

ESP-WROOM-02D WiFi module @6Mbps

• Remote device

Dell Precision 7820 workstation

- A 3.6GHz 8-core Intel Xeon CPU and a 48GB Nvidia RTX A6000 GPU

• Baselines

MCUNet [1]   — NAS to find the best local NN

Edge-only — compress and offload raw data

DeepCOD [2] — use a NN-based encoder

SPINN [3] — early-exit inference

• Datasets

CIFAR-10/100, SVHN, Tiny ImageNet (200 classes)

[1] MCUNet: Tiny deep learning on IoT devices, NIPS 2020.
[2] Deep compressive offloading: Speeding up neural network inference by trading edge computing for network latency, Sensys 2020.
[3] SPINN: synergistic progressive inference of neural network over device and cloud, Mobicom 2020.
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Overall Performance Evaluation

AgileNN reduces end-to-end latency by 2×-2.5× Accuracy & Compression rate

Reduction of transmitted data size compared to DeepCOD
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Local Resource Saving Evaluation

Local Energy Consumption

• 1.6×-2.5× more efficient than DeepCOD

• 8× more efficient than MCUNet

Local Memory & Storage

Memory — SRAM, storage — FRAM

• Local NN saves 40%-50% memory 
and >50% storage

• 10% higher accuracy
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Different System Settings Evaluation

Impact of Local CPU Frequency

• 64MHz – 216MHz

• Reduce latency by 2.1×-2.5×

Impact of Network Bandwidth

• Bluetooth (270kbps, 2Mbps), WiFi (6Mbps)

• Keeps outperforming baselines
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Summary

Agile Offloading for Neural Network Inference

• AgileNN: shifts the rationale of offloading from fixed to data-centric & agile

• Leveraging XAI to achieve such agility

• >6× lower latency and >8× resource consumption for extremely weak devices

Explainable AI for Systems

• Integrate XAI techniques into NN offloading systems

• Migrating XAI computation from device to offline training
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—————————————— Techniques —————————————

Combining Local and 
Remote Predictions

Pre-processing the 
Feature Extractor

Skewness 
Manipulation
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Summary

—————————————— Key Idea ——————————————

Important features: Handled locally
Less important features: Offload

————————————— Contradiction —————————————

Latency
weak capabilities

Accuracy

——————————————— Topic ——————————————

Deploying NNs on Extremely Weak Devices
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Thanks for your attention

Reporter : Sun Hao

2023.11.9

Q & A

Real-time Neural Network Inference on Extremely Weak 
Devices: Agile Offloading with Explainable AI
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