

Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI

MobiCom '22, October 17–21, 2022, Sydney, NSW, Australia

Visit https://snspace.top/2023/11/01/AgileNN/

Reporter : Sun Hao

2023.11.9

Salute to Authors

Kai Huang

The Department of Electrical and Computer Engineering, University of Pittsburgh

A PhD candidate, supervised by Dr. Wei Gao Interests: Efficient AI, Large Language Models, AI for Systems, Internet of Things, Mobile and Edge Computing

[MobiSys'23] ElasticTrainer: Speeding Up On-Device Training with Runtime Elastic Tensor Selection [MobiCom'22] Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable Al [SenSys'22] AiFi: AI-Enabled WiFi Interference Cancellation with Commodity PHY-Layer Information [MobiSys'20] MagHacker: eavesdropping on stylus pen writing via magnetic sensing from commodity mobile devices

Wei Gao

The Department of Electrical and Computer Engineering, University of Pittsburgh

An Associate Professor, direct the Pitt Intelligent System Laboratory (ISL) Interests: On-device AI, Mobile and embedded computing systems, Mobile and connected health, Cyber-physical systems and Internet of Things Co-chair of the 2023 ACM Conference on Embedded Networked and Sensor Systems (SenSys) Co-Chair of the 2023 IEEE/ACM Int'l Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) Co-chairing the 7th Mobile App Competition in conjunction with ACM MobiCom'22

Co-Chair of the 2022 EAI Int'l Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous)

|Bring Real-time AI to Weak Embedded Devices

• Background & Motivation

Wearables for Health Monitoring

Small Robots for Autonomous Navigation

Sensors & Actuators for Smart Home

Resource Limits on Weak Embedded Devices

• Background & Motivation

| Existing Solutions

• Background & Motivation

Local Inference

- Pruning, Compression, NAS
- Leads to oversimplified NN structures
- >10% accuracy loss

Remote Inference

- Compress raw data before transmission
- Limited data compressibility when the accuracy loss is minimum

NN Partitioning

- Use a local NN to sparsify & compress data
- Higher compressibility but expensive local NNs

| Existing NN Partitioning Solutions

AgileNN: From Fixed to Data-centric & Agile

• Overview

AgileNN: From Fixed to Data-centric & Agile

• Overview

Important features: clearer to perceive

Less important features: more compressible

Offload

Challenge 1: How to correctly evaluate feature importance?

Challenge 2: How to maximize the compressibility of less important features?

Solving Challenge 1: Evaluating Feature Important via eXplainable Al • Solutions

Solving Challenge 2: Enforcing Skewed Distribution of Feature Importance via XAI Loss Function

Solutions

Disorder Loss

Ensure topmost important features are extracted into the first-k channels

 \rightarrow Avoid online importance evaluation

| Combining Predictions & Preprocessing

• Solutions

Combining local & remote predictions

Ensure predictions to be in the same scale

Pre-processing the feature extractor

Select k initial channels where the top-k features with high importance are most likely to be located

AgileNN's Offline Training & Online Inference Framework

Overview

Implementation & Evaluation Setup

• Evaluation

Local device

STM32F746NG MCU board, 216MHz, 320kB SRAM, 1MB FRAM ESP-WROOM-02D WiFi module @6Mbps

Remote device

Dell Precision 7820 workstation

- A 3.6GHz 8-core Intel Xeon CPU and a 48GB Nvidia RTX A6000 GPU

Baselines

- MCUNet [1] NAS to find the best local NN
- Edge-only compress and offload raw data
- **DeepCOD** [2] use a NN-based encoder
- SPINN [3] early-exit inference

• Datasets

CIFAR-10/100, SVHN, Tiny ImageNet (200 classes)

[1] MCUNet: Tiny deep learning on IoT devices, NIPS 2020.

[2] Deep compressive offloading: Speeding up neural network inference by trading edge computing for network latency, Sensys 2020.[3] SPINN: synergistic progressive inference of neural network over device and cloud, Mobicom 2020.

Overall Performance

Evaluation

Reduction of transmitted data size compared to DeepCOD

Dataset	CIFAR-10	CIFAR-100	SVHN	ImageNet
Reduction	43.7%	15.8%	72.3%	20.8%

|Local Resource Saving

• Evaluation

Local Energy Consumption

- 1.6×-2.5× more efficient than DeepCOD
- 8× more efficient than MCUNet

Local Memory & Storage

Memory — SRAM, storage — FRAM

- Local NN saves 40%-50% memory and >50% storage
- 10% higher accuracy

| Different System Settings

• Evaluation

Impact of Local CPU Frequency

- 64MHz 216MHz
- Reduce latency by 2.1×-2.5×

Impact of Network Bandwidth

- Bluetooth (270kbps, 2Mbps), WiFi (6Mbps)
- Keeps outperforming baselines

| Summary

Agile Offloading for Neural Network Inference

- AgileNN: shifts the rationale of offloading from fixed to data-centric & agile
- Leveraging XAI to achieve such agility
- >6× lower latency and >8× resource consumption for extremely weak devices

Explainable AI for Systems

- Integrate XAI techniques into NN offloading systems
- Migrating XAI computation from device to offline training

| Summary

Thanks for your attention Q & A

Real-time Neural Network Inference on Extremely Weak Devices: Agile Offloading with Explainable AI

Reporter : Sun Hao

2023.11.9